Block Diagonal Natural Evolution Strategies
نویسندگان
چکیده
The Natural Evolution Strategies (NES) family of search algorithms have been shown to be efficient black-box optimizers, but the most powerful version xNES does not scale to problems with more than a few hundred dimensions. And the scalable variant, SNES, potentially ignores important correlations between parameters. This paper introduces Block Diagonal NES (BD-NES), a variant of NES which uses a block diagonal covariance matrix. The resulting update equations are computationally effective on problems with much higher dimensionality than their full-covariance counterparts, while retaining faster convergence speed than methods that ignore covariance information altogether. The algorithm has been tested on the Octopus-arm benchmark, and the experiments section presents performance statistics showing that BDNES achieves better performance than SNES on networks that are too large to be optimized by xNES.
منابع مشابه
Block Diagonal Majorization on $C_{0}$
Let $mathbf{c}_0$ be the real vector space of all real sequences which converge to zero. For every $x,yin mathbf{c}_0$, it is said that $y$ is block diagonal majorized by $x$ (written $yprec_b x$) if there exists a block diagonal row stochastic matrix $R$ such that $y=Rx$. In this paper we find the possible structure of linear functions $T:mathbf{c}_0rightarrow mathbf{c}_0$ preserving $prec_b$.
متن کاملON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION
The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...
متن کاملTraining recurrent network with block-diagonal approximated Levenberg-Marquardt algorithm
In this paper, we propose the block-diagonal matrix to approximate the Hessian matrix in the Levenberg Mar-quardt method in the training of neural networks. Two weight updating strategies, namely asynchronous and synchronous updating methods were investigated. Asyn-chronous method updates weights of one block at a time while synchronous method updates all weights at the same time. Variations of...
متن کاملUpper and lower bounds for numerical radii of block shifts
For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...
متن کاملParallel Multilevel Block ILU Preconditioning Techniques for Large Sparse Linear Systems
We present a class of parallel preconditioning strategies built on a multilevel block incomplete LU (ILU) factorization technique to solve large sparse linear systems on distributed memory parallel computers. The preconditioners are constructed by using the concept of block independent sets. Two algorithms for constructing block independent sets of a distributed sparse matrix are proposed. We c...
متن کامل